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Introduction

The may or concerns of the Aiphard research are the total cost of software development
and the quality of the resulting programs. Problems that arise from repeated modifications to
large programs , although often ignored in the literature , are of particular interest.

The Alphard language design has drawn heavily on previous work in both programming
methodo logy and program ver ifi~ati on. From the former we learned that in order to
understand the programs we write , we must find some way to make them less comp lex; this
may be done by restricting both the form of the programs (through modularit y and localizati on
of information (Parnas72)) and the process through which we create them (through stepwise
refinement [Dijkstra72 , Wirth7 l ]). From the latter we learned that a programmer needs a
precise , correct descripti on of what a program does in order to use it without having to
understand its implementation in detail; we also found techniques for writing and proving such
descri ptions.

• Our concern with modifiabilit y implies that the things we do to reduce program
complexity mus t remain visibly part of the program. Thus it is not sufficient to develop a
pr ogram in a well-structured fashion; the structure that was imposed must be obvious in the
resulting program. The concept of abstract data type has therefore become central. In
Aiphard the concep t is realized through a language mechanism called a ~~~ The &rJ!i. is
derived fr om the Simula class [Dah172] in much the same way as the CLU cluster [Liskov74],
and has the property that a programmer may reveal the behavior of some data type ’ to other
users while concealing det ails of the implementation.

This explici t distinction between the abstract behavior of a data type and the concrete
program which happens to implement that behavior provides an ideal setting in which to apply
Hoare’s techniques for proving data representations correct [Hoare72]. In the Alphard
adaptation, we show (a) that the concrete representation is adequate to represent the
abstract t ype, (b) that it is initialized properly, and (c) that each operator provided for the
type both preserves the integrity of the representation and does what it is claimed to do (in
terms of the abstract behavior and of the concrete procedure that happens to imp lemen t the
operator). The specific formulas that must be proved are given below, and the methodology is
discussed in [Wu If 76].

This paper describes the language and verification methodology that have resulted from
merging these ideas. A particular example is used to motivate the description, and a
nonstandard implementation of the central data abstraction was chosen to emphasize the

— independence of the abstract and concrete definitions. The next section presents a problem

~ In this paper we will use the word “type0 in a nontechnical sense. In general, the
abs traction introduced by a ~~~ need not be a type as we traditionally understand the word.

- —-—-- -- - ~~~~~~~~~
--
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Page 4 Introduction

for which a binary tree is a natural primitive data structure; the specifications and procedures
for the solution assume the existence of an implementati on of binary trees.

The Alphard form which defines those binary trees is developed in the third section.
The development of that form is essentiall y independent of the motivating examp le, so the -•

resul ting abstraction is useful for other applications as well.

Example: Minimal-Register Evaluation Order

Suppose you are gIven an arithmetic ex pression represented as a binary parse tree and
you are asked to output the nodes Ifl postf ix form with the subexpressions arranged in the
order that minimizes the number of registers required f or the expression evaluation. An
algorithm for finding this order was given by Nakata; its description was refined by Johrisson
[Nakata67 , Johnsson75j . The algorithm has two steps:

Assi gn a we ig ht W to each node ,t of the tree such that if it is a leaf then
W~ =O, otherw ise the immediate descendants of it have labels rig ht and Left

and W,~ 
min(max(leJt+l , r ight ) , max (Left , r~ght+1)). W,~ is the number of

registers needed to evaluate the tr ee w ith root a.

To evaluate the expression , begin at the root node and walk through the
tree generating code so that at each node the operand requiring the larger
number of registers is evaluated first. If the oper ds require the same
number of registers , the lef t operand is evaluated firs t. If the right operand
is evaluated first , include an indication of the reversal in the output st ream .

Assuming that suitable definitions for trees and an output stream exist , this is easily converted
to a program. We will use a data abstraction called a btree as if it were a primitive data type.
It ac ts like a binary tree with an associated collection of node references called brtodes. There
are at least enough operators on bnodes to obtain the left son, the right son, and the value
field (nodeval) of any node and to determine whether a node is a leaf . The btree ~~~jj~ given
in Appendix A provides other operators , but they are not required for this examp le. For
convenience , we restrict the size of btrees. We will use a queue to construct the output; a
suitable definition is given in [Wu1176).

We firs t write , more precisel y than the English algorithm above, an expressi on that
describes the desired output for a parse tree E. This expression appears as the p~~

j
~ 
condit on

(output assertion ) of the procedure nzüzreg that computes it. We let W10ft denote the weight
of the left suhtree , Wr,,,h? denote the weight of the right subtree , and ~rtver top supply t he

operator that indicates subexpression reversal. 2 The operator ““-‘“ denotes concatenation. The
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two-step algorithm is then written:

minreg(E: btree(’r: record (wt ,data: integer), ?maxht: integer)) returns P: queue

~~~ (isleaf ( E) minreg(E) = E.nodeval .data)
A (Wleft �Wr,ght ~ minreg(E) = minreg(E.leftson)~minreg(E.rightson)”.E.nodeval.data)
A (W left ’(W rtg ht ~ minreg( E) minreg(E.rightson).wminreg(E.leftson)

— invertop~ E.nodeval.data)
begin ~ ca l exptr: bnode(E);
markwei ghts (ex ptr) ;
minregwalk(exptr ,P);

The program tninrcg operates on an arithmeti c expression stored as a btree named E with a
tw o-field record at each node and a known maximum height. The question marks on the btree
parameters r and maxht indicate that those are implici t parameters -- that is, they will
automaticall y be available for any btree which is passed as input. The record field names
must , however , be exactl y “data ” and “wt ”. Minreg produces a queue named P fr om the tree E
by first declaring a bnode variable , exptr , to point at nodes in E (exptr is automaticall y
initialized to the root of E), then evaluating the regi~.ter requirements of the subtrees with
function ,narkwc tgh ts , and finall y producing the queue with a special treewalk , ,ninregwalk.
Note that P is automaticall y initialized to the empt y queue when the output variable for the
procedure is set up.

Using Mk to denote the result of executing markwei ghts on the tree with root Ic (e.g.,
Mr~.ght markwei ghts(exp. rightson)) , we can write the defini tion of procedure markweights:

markwei ghts(exp: hnode(?E: btree(?r: record (wt ,cia ta: integer), ?maxht: integer)))
returns thicwt : integer

~~~ 
exp.nocleval.wt ~~~~ A (is leaf(exp) M~~p

A (- ‘ is leaf (ex p) 
~ 

M,~ = min(max(Mleft +l
~
Mrjght ), max(M1eft~

Mrjght+l))) —

begin local leftwt , rightw t: integer;
if isle af (exp) then thiswt ~ 0

eke begin
leftw t ~

-‘ marlcweights(e x p. left s on);
ri ghtwt markwei ghts(exp.ri ghtson);
thiswt ‘— min(max(leftw t+1 ,rightwt) , max(leftw t ,rightw t+1));

exp.nodeval.w t .- thiswt;

~~~

2 1n some cases we use qualified names rather than functional notation for clarity.
Both sty les ar e acceptable in Alphard, and no deep significance should be read into the
distinction. Thus “E.nodeval.data ” denotes the data field of the record stored at the node E.

. ~~~~~~~ 
—

~~~~~~ 
. — .  

-~~~~—- -- — —  —~~~~~~ -- - - - .- ..— 1__ 
~~~~~~~~~~
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Markwei ghts walks over exp (a hnode which indicates a subtree), set ting the wt field at each
node to the value desc ribed by the algorithm above. The pQ~j ~ condition, located af ter the
procedure header , specifies the result of the funct ion. It is I he formal descrip tion of wha t
must be verified about procedure marlcwei ghts and consequentl y a theorem about the use of
that procedure. The body of markwe ight uses bnode functions named ~s 1eaf, Leftsor&, rig htson,
and nodeval. It also refers to the wt field of the record stored as the value at each node.
These operations are discussed in detail in the next section.

minregwalk(exp: bnode(?E:htree(?r:reco rd(wt ,data :in teger) ,?maxh t:integer)), order:queue)

~~~ (isleaf (ex p) ~ order = order ’ exp.nodeval .data)
A (Wteft � Wright order = ordar ’ — — — exp.nodeval.data)
A (W ieft < W rtght ~~ order = order ’ Qi~ ~L invertop — exp.nodeval .data)

where 
~L’ ~R are values which satisf y the post conditions of

minregwalk(W j~1~ ,<~‘) , ~~~~~~~~~~~~~~~~ respectively —

begin
if ~isleaf (exp) then

if exp.leftson.nodeval .wt ~ exp.ri ghtson.nodeval.wt
then ~~~~ minregwalk(exp,{eftson ,orcfer); minregwalk(exp.righfson,order) end
else ~~~ minregwalk(exp. rightson ,order);

m,nregwa lk(exp. left son ,order); enq(order ,invertop) ~~~
enq(order ,exp.nodeval .dat a);

~ac~
Minregwalk concatena tes a postf ix representat ion of its first argument (a parse tree) to its
second argument (a queue). It tests the we ights previousl y stored at the nodes in order to
determine the evaluation order of the subtrees . The program uses the same func tions on
bnodes as markweights ; it also uses a queue, but only performs the enq (enqueue) operation.3

The formal definition and ve rification of queues is given elsewhere [Wu lf76); the usage in
minregwalk should be clear.

Given suitable specifications of the func tions on bnodes and queues, these t wo

procedures can be shown to satisf y their ~~~ conditions.4 The ~~~ condi tions are , in turn,
direc t expressions of the algorithms given in English. It is straightforward , but neither
necessary nor appr opr iate , to demonst rate that the ~~~ conditions express the minimal-
regis ter property. The algorithms themselves we re acceptable on the strength of the analysis
that accompanied them, and nothing would be gained by repeating that analysis for the
formulation in the program.

The erzq function appends its second argument to the queue named by the first
argument (i.e., enq(Q,e) = 0 append e). The queue was created (initially empty) in the top-
level procedure minreg for the purpose of collecting the output.

The detailed proofs are standard and would contribute little to this exposition of
Alphard. 

~~~~~~~~ -.-~~~~~~~~ - - -~~~~~~~~~~~~~ - --- ~~~~~~~~~~~~
- - - - - -.- - - -
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In the next sec tion we define , implement, and verify btrees and their associated bnodes,
showing how the information needed to understand their behavior is kept separate from the
information about their implementation.

Definition and Verification of a Form

Alphard’s data abstraction mechanism is the ~~~ a syntactic device for encapsulating a
set of data declarations , function definitions , and other information about imp lementation
details while revealing to the user only selected information about the behavior of the
abstraction. The verif ication shows that the implementation supports the behavior described
in the specif ication. The programs in the previous section used “btree” and “bnode” in the
same way that other languages use t ype names: we said that exp was a bnode and assumed
that we could therefore perform certain opera tions on it. In this section we develop the f.ç!rn
that defines btrees and bnodes. The definition includes not only the functions actually used
by the procedures above, but also enough others to round out the tQ!~ as a useful

abstraction . For example , the form defines func tions that might be used to construct the parse
tree that rninreg manipulates.

A form contains three maj or components. These are the specifications , which provide
information to the user about the abstrac t behavior of the objects being defined, the

~~~~esentati~~, which defines the concrete data s tructures used to maintain the objects and
which states certain of their properties , and the implementatio~ which contains the bodies of
the operators. Thus the skeleton of the btree f.Qj~ is:

f orm btree(N: record , maxht : integer) —

specif ications

representation

implementation

endform

where &lipses are used to denote text which will be filled in later. This form actuall y
describes a varie ty of specific trees: both the maximum height of the btree, rnaxh t , and the
record to be st ored at each node, N, are parameters to the instantiation of the form. Note
that bnodes have also been treated as “types~. One of the components of the btree !~i~ 

is
the definiti on of bnode, which is a f orm in its own right. We will examine each of the
components in turn; the fragments discussed here are assembled as a complete ~rrn definition
in Appendix A.
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Spec~fscations of btree

The btree ~p~cif icatio ns exp lain what a bt ree is and how it can be used. They give the
res trictions on the instantiation parameters (req uires), say that a btree is a special kind of
graph5 (

~~, inva~~~ j ,  ~~~~~~~~ list the operations that can be performed on it (functions),

and give the specifications for bnodes which refer to a given btree (forrn).

specif icat i ons
regu res maxht ~ 0
let btree = <r:N, g:grap h>

where g = <nodes: ~tr:N}, links: (<tr 1:N, w:boolean,
invariant

(<n,w ,k 1>,<n,w ,k2> links ~ Ic1 — k2) A ! unique left & right sons
(<n,w ,x> ( links ~ Jy <n,I-w ,y> ( links) ! either zero or two sons
Yn ( nodes (<n,w ,r> -( links I r is the root

A pathcnt(r ,n) 1 ! singly connected
A length(<r ..n>) < maxht) ! limited height

initially btree = <r , <(r},{ ~ >>;

functions
root (tr:btree ) returns res: bnode 

~Q~J res = r,
hei ght(t r:btree) returns h:integer ~~~j h = max k st k=length(<r, . . ., x>)

St ( is leaf (x ) A root(r)),

The r~~iiIr~~ simply says that only nonnegative values of maxh t (the maximum height of the
tree) make sense. The k~t declares that a btree may be regarded as a distinguished root and
a graph, and that grap h c oncepts will be used to explain them. Since a graph consists of a
pair of sets , the let goes on to describe these sets in terms of booleans and the record type
passed as an instantiation parameter. The invariant states certain rela tions on the graph
which must always hold of a btree; the comments (! . . .) give the intuitive interpretation of
each phrase. Initially states that when a btree is originally instantiated, it is empty except for
the root. For each function, the s~~cif icat ions give the function name, its input parameters , its
result (if any), and the abstract ~~~ and ~~~ conditions needed for verif ying the function and
describing its inputs and outputs. The invariant will always be implicitl y anded with these
exp licit clauses to give the actual pre and 

~~~ 
conditions. The func tions root and height are

applicable to any btree (i.e., any one for which the invariant holds), so the constant true as an
explicit pre condition is omitted.

Finally, the btree specifica tions give the abstract description of the sub-!.~ rn bnode.
The latter ~~~~~ organization is similar to btree ’s, excep t that the specifications of briode
have been printed with those of btree in order to localize the information that will be
presented to a user.

A suitable definition of graphs is given in Appendix B.

.~
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L2!~i bnode(T:btree(?N:record ,maxht:integer)) —

hegiriform
specific a tions
let bnode = ptr:N;
invariant ptr ( nodes;
initially ptr r;
functions

- leftson(tr :bnode) returns subtr:bnode
p.~e - ‘ isleaf (tr ) p9~j~ <tr ,O,subtr> ( links,

rightson(tr:bnode) returns subtr:bnode
PL~ 

— is leaf ( tr )  p~~j~ <tr ,1,subtr> ( links,
isleaf(tr: bnode) re iurns tv:boolean

p~ j tv Yw -Jsubtr <tr ,w,subtr> ( links,
isroot(tr:bnode) returns tv:boolean

~~~ 
Iv Yw —3s ubtr <subtr ,w,tr> ( links,

father(tr :hnode) returns subtr:bnode
p~e ‘root(tr) pQ~

j  3w it <tr ,w ,subtr> ( links;
anceslor (tr ,subtr:bnode) urns tv:boolean

~~st tv tr=subtr v Jp=<tr , . . ., subtr> st path(p),
extenci (tr:bn ode) ~ isleaf ( tr) A height(tr ) < maxht

~~~ 
- .isleaf (tr) A isleaf (rig htsori(t r)) A isleaf (leftson(tr))

selecfor s
nodeval: N;

enciform

The P2~~ 
conditions of leftson and rightson indicate that a weight of 0 on an arc denotes a left

son, while a wei ght of 1 denotes a right son. The only thing new here is the selectors , which
may be viewed as field-accessors. A name declared as a selector may be used both to set
and to fetch values. Note that a bnode is always associated with a p art icub.ir btree.

Representation of btree

The representation part shows how btrees are actually stored in terms of other data
structures (unique, invar tant)  and exp lains the correspondence between this concrete
representation and the abstract description given in the specifications Q~p).

~~~~esentation
unique T: vector( rec: record(node:N, inuse:boolean), ~ ,2

n~ xht + 1_ i)
m i t  

~~~~ 
f or x: invec(T) do x.iriuse ~ false; T[l] ~ rec(nutl ,t rue) ~~~~j

~~~(T) = < T[ I].node, < {T[i].node I T(i].iriuse}, (<T(i].node,w,T(2i+w].node>
I T[iJ.inuse A T(2i+w].inuse A w({O,1} } > > ;

invariant .7(1J.irtuse / ~ (Tf.iJ.inuse ~ 1=1 v Tfi div 2JJnuseAT(1+1 -2(1 mod 2flJnuse);

_

~

: :.~: 
—

~~~~~~~
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The unique declaration states that each btree will consist of a vector of records (node value
and “m use ” hit) indexed from 1 to 2 max ht+1 ..1~ Alphard’s scope rules prevent the vector and
the record field names from being used outside the form. The ~~t clause of the declaration
gives the initialization code to be executed when that vect or is allocated.6 it sets all m use bits
to false , then sets the record at the root to (null ,true). The unique declaratior states that
each instance of a btree w ill get its own vector.

The terms ~~~ T) and invariant explain how the vector is interpreted as a
representation of an abstract tree. The representation functi on ~~~(T) exhibi ts an ordered
pair consist ing of the node field of T[I), which represents the root , and a pair of se ts which
represent the graph. The invariant gives a res triction on the distribution of m use bits which
is sufficient to enforce the abst ract invariant. .

In the representation chosen for this version of btree , all nodes are stored in a vector
and the 1~’ node’s saris are f ound at positions 2j and 2j+1. The m use bit distinguishes
whether potential t ree positions are actuall y included in the tree; a separate bi t was set aside
for this purpose because the node can be an arbitrary record and, as a resul t , there is no way
to encode “nonexistence ” in the node value itself. Note that this is the first time a specific
implemen tahon strategy has been mentioned: up to this point a linked-list strategy should
have seemed equally plausible.

Verificat ton Considerat ions

We turn now to the question of how we decide whether a ~~~ will actually behave as
promised by its abstract specifications -- that is , wha t properties of a for m must be verified if
we wish to use its instar itiations with confidence. The methodology depends on explicit ly
separating the desc ri ption of how an Object behaves from the code that manipulates the
representation in order to achieve that behavior . It is derived from Hoare ’s tec hnique for
showing correctness of data representations[Hoare72) .

The abstract object and its behavior are described in terms of some mathematical
enti ties natural to the problem domain. Graphs are used here to describe btrees; sequences
are used in [Wu lf76) to describe queues and stacks , and so on. In btree we appeal to graphs:

— in the invarianL which exp lains tha t a btree is a graph that meets certain
res t rict ions ,

— in the initially clause , where a particular graph and its root are displayed, and

6 The phrase “for x: invec(T)” invokes the Atphard iteration statement for vectors. It
c auses the loop to be executed once for each element in the vector. See [Shawl6] for
fur ther discussion of iteration.

~

--

~

- --

~

- -

~ 

- - - - - - ~~~--- ~~~~~~ -— —~~~~~~ -~~~~~ -~~~~~~ _ _ _ _ _ _ _ _ _ _
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- in the ~re and ~~~j conditions for each function, whic h describe the effect the
function has on a graph which satisfies the invariant.

The form contains a parallel set of descrip tions of the concrete object and how it
behaves. Since bt rees are implemented in terms of a vector of records , the concrete
specifications give restrictions and effec ts on that vector. In many cases this makes the effect
of a function much easier to specif y and verif y than would the abs tract description alone.

Now, althoug h it is useful to distinguish between the behavior we want and the data
structures we operate on, we also need to show a relationship that holds between the two.
This is achieved with the iepresentat ’on function ~~ (T), which gives a mapping from a vector
of records to a graph and its root The purpose of a form verification is to ensure that the
two invariarits and the rep(T) relation between them are preserved.

In order to ver if - /  a form we must therefore prove four things. Two re late to the
representation itself and two must be shown for each function. Informall y, the four required
steps are 7:

For the form
1. Representation validity

l~( T)  
~ la~~ P(Tfl

2. Initialization
requires { m i t  clause } initially(rep(T)) A Ic(T)

For each function
3. Concrete Operation

in(T) A ‘C~
T

~ 
function body gj~j (T) A I

~
(T)

4. Relation between abs tract and concrete
4a. Jc(T) A ~~e(rep(T)) D

4b. A pre(rep(T’)) A out(T) ~ post(rep(T))

Step 1 shows that any legal state of the concre te representation has a corresponding abstract
object (the converse is deducible from the other steps). Step 2 shows that the initial state
created by the representation section is legal. Step 3 is the standard verification formula for
the concrete operation as a simple program; note that it enforces the preservation of ~~ Step

We will use t a~~ P(T~ 
to denote the abstract invariant of an object whose concrete

representation is T, 
~~~ 

to denote the corresponding concrete invariant , italics to refer to
code segments , and the names of specifica tion clauses and assertions to refer to those
formulas. In step 4b, “pre(rep(T’)) ” refers to the value of T before execution of the function.
A complete development of the form verification methodology appears in (WuIf 76].
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4 guarantees (a) that the c oncrete operation is applicable whenever the abstract ore condition
holds and (b) that if the operation is performed, the result corresponds properly to the
abstrac t specifications.

For btree , several of these steps will be simplified by appealing to the following
standard construct ion , which determines the c orrespondence between an index in the vector
representation and a path from the root to a node in the abstract graph.

Le t T(1] be the vector element which represents some node in a btree.
Let W OW lw 2...wk be the binary representati on of j , w0=1.
Define p1 as p~ = SUMb O  I (w~ 2~~

) for i=0...k (note that pm~ 2r~..i
+v11 and P k J ~Then the (abstract ) path from the root to a node is the path whose elements are

<T [pi iJ.node ,w~,
T[p

~
).node> for i =

In addition, if the node is in the tree , T[j J. inuse = true and, because of the term
T [i].mnuse ~ i= 1 v T[i dw2].inuse

of the invariant , all elements in the path are also in the tree.

Verif ication of fç~~ propert ies of btree

At this point we have enough informa tion about btrees to perform verification steps 1
and 2, which show the overall validi ty of the form. We can now proceed with an informal
proof of these steps.

1. Representation Validit y
Show: T[1]. inuce A (T[i]. inuse ~ i= 1 v T[i thu 2].inuseAT [i+1-2(i ,nod 2))inuse) ~

(<n,w,k 1>,<n,w ,k2> ( links ~ k 1=k2) A (<n,w,x> links ~ Jy <n,1_w ,y> ( links)
Yn ~ nodes (<n,w,r> -( links A pathcn t(r ,n)=1 A length(<r ...n>) s maxht)
where nodes = ~T[i].node T[i].inuse~

links = ~<T [i}.node,w ,T[2i+w] .node> ( T[i].inuseA T[2i+w].inuse A w { 0 ,1))
Proof: Take the clauses of the conclusion one by one:

(a) k 1=k 2 because the rep func tion uniquely determines the triples in links
on the basis of n and w.

(b) Jy <n,1-w ,y> because both sons or neither son of a node have the
m use bit set.

(c) <n,w ,r-’ -‘ links because r=T[1].node and 1#2 i+w for any integer i�1.
(d) pathc nt(r ,n) = 1 because the standard construction is unique.
(e) length(<r ...n>) ~ maxht because each vector index must be in the range

(1..2maxh t f 1 _ 1 ] and the standard construction gives a path whose length
is the number of significan t bits in the vector index. 

-- -  -. --- .-—--~~~---———~ -~~-..—,—-.--..-- ---.--.-- -~- - - - -~~ -- -~~~---— --—.--. — ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. Initialization
Show: maxht 2 0 { ~~ x:invec(T) do x.inuse ~- false; T[1] ~ rec(null,true)

bt ree = <T(1).node , <{T (1].node}, {} >> A T[1].inuse
A (T(i]. inuse D (m=1 v T[ i div 2].mnuseAl[ i+1-2(i mod 2)].inuse))

Proof: We will pacs Over the verif icati on of the for loop; it sets all m use
hits to false (see (Shaw76J fnr details). The uniterated assignment
complete the initialization by making T[ 1] the only ac tive node.

These steps demonstrate that any vector T which satisfies I~ represents a legal limited-height
btree and that the initial value of. a newly-instantia ted btr e is initialized properly. We will
show below that each function preserves the accuracy of the representation, but the
adequacy of that representation is established here.

Ins plernentation of btree

The ~~~ementat ion part gives the bodies of the two functi ons and the bnode 
~~~~promised by the ~pec if i ca t i ons. For each function , we provide both the program to compute

the functi on and the concrete in and ~~ conditions. Al though neither function is used in the
minreg program , they are included in the btree form in order to make it a more generally
useful abstrac tion. The verificati on of these functions is omitted here because the technique
is illustrated betow for functions we have actually used.

implementation

~�2~1 
roo t out res = 1 =
The hnode return parameter is initialized to the root.

~~~~ height out h=log(max~ it T[i].inuse) =

fJ~~t j: downt o(2m ht4 L 1,1) suchtha t T[j].inuse
f loor(log~j);

I r np temeiuatio n of bnode

The bnode Loi!~i is organized like the btree ~~~~~~ and its verification proceeds in a
si,i ’a’~ fashion. Its ~pecific at ions were given as par t of the btree specifications. We now look
at its represent ati on, which is simply an integer index into the vector which represents the
btree:

~~~ ese u t at ion
unique ptr: integer m i t  ptr 4- 1;

~~~ ptr) = T[ptr3.node;
invariant 1~ ptr~2m

~~
t
~t+l _ 1 A T[ptr].inuse;

—- —- -.-- - -~~~--- -~~~~~ -—~~~~~~~ .-  -
~~~~~ — - .~~~--~~~~~~~~~~~~~~~~~~~~~ .—--—
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To verif y the form properti es , we must prove two things:

1. Representation validity
Show: 1sp tr~2ma~~t~~_ 1 A T(ptr).inuse ~ T(ptr].node ( T[i].node T [i].inuse
Proof: Clear.

2. Initializa tion
Show: true ptre- 1 } T[p trj. node = T[ 1].node A 1~ pt r s2 ma

~
t ht4 L1

A T[ptrJ.mnuse
Proof: Applying the rep function and the assi gnment axiom, this becomes

T[1 ].node = T[1].node A 1<1<2maxht+ 1 _ 1 A T[1].inuse
This reduces to T[1 ].inuse, which is assured by the concre te invariant of btree.

Thus we have shown that the representation supports the abstraction. We will next discuss
and verif y some of the functi ons used by the programs of the previous section. Other
func tions are given in the form definition in Appendix A. Note that the invariants of btree (as
well as those of bnode) must be preserved. This step is omitted from the proofs given here
because no par t of the btree representation is altered.

One of the simp les t functions finds the left son of a given node. Its abstract
specifications and body are:

leftson(tr:bnocj e) returns subtr:bnode

~~~ 
‘isleaf(tr) 

~~~ ~tr ,0,subtr> ( links

~~~~ leftson in —isleaf ( tr ) out subtr.ptr = 2*tr.ptr =
subtr .ptr ~— 2*tr.ptr;

The program itself is clear: double a node’s index to find its lef t son. The th condition asserts
that the lef tson function may not be applied to a leaf 8 The out condition repeats the doubling
propert y. Recall tha t the concrete invariant must be shown to hold along with the i~i 

and 
~~~conditions, so we may be sure lefts on is applied only to legal bnodes and does not destroy

them. These properties are verified formall y by proving the following (again tc denotes the
concrete invariant):

8 This design decision forces the user to extend the tree explicitly before using new
nodes, but it of fers a degree of protection against errors that automatic tree growth would
not. We could, of course, extend the tree automatically when leftson or rightson is applied to
a leaf , but that is a different decision and leads to a different program.
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3. Concrete operation
Show: Jj (j div 2 — tr .ptr A tr. T(j ]. inuse A 1~~~2maxht+ 1_ 1) A

{ subtr.ptr 2*tr.ptr } subtr .ptr — 2str .ptr A I
~Proof: Choosing j =2*tr .ptr and applying the assignment axiom, we obtain

tr.ptr tr .ptr A tr.T[2 st r .ptrJ.inuse A 1~2.tr.ptr~2m
~

t ht4l_ 1 A

~ 2*tr .ptr—2str.ptr A

The concrete invariant for tr is maintained since tr is not modified; it
is established for subtr because of the range check on j.

4a. in condi tion holds
Show: 1~ tr.ptr~2m

~~
ht

~~ _ 1 
~ tr.T(tr .ptr).inuse A 3w,s <tr ,w,s>(links

~ 3j (j div 2=tr .ptr A tr.T(j ].inuse A i�1�2max ht÷1 _ 1
Proof: If Jw ,s St <tr ,w,s> ( links, then s must correspond to the vector element

indexed by 2*tr.ptr +w , and it must be an ac tive node. This is sufficient to
establish the conclusion.

41). ~~~ condition holds
Show: 1�tr .ptr~2ma

~~
t 4 i

~ 1 A tr.T [tr .ptr].iruuse A 3w ,s <tr ,w ,s> links
A subtr .ptr=2*tr.ptr D <tr ,0,s> ( links

Proof: The concrete invariant of btree says that the s must be 2*tr.ptr+w
and that both <tr ,O,s> and <tr ,1,s> exi st , which is

precisel y the condition needed.

Note that the proof refers to both the ptr field of the input parameter tr and the tree T for
which Ir was created. Qualified names may be used for this selection, so we ‘.‘rite tr.ptr and
tr.T , respectively. These phrases can be further qualified, so we can rel ct a par ticular
element of vector tr.T by writing tr.T[ i] (since I is a vector of records) and the m use field of
that vector element by writing tr.T[iJ.inuse. The definition and verification of rightson are
essentially the same.

We often needed to determine whether the tree we had in hand was a leaf. The
specifica tions and function body for isleaf are

is leaf(tr:bnode) returns tv:boo lean

~~~ tv ~ Yw — Jsubtr <tr ,w ,subtr> ( links

~~ç~y isleaf
gj
~
j  tv (-3j (j dtu 2 tr.ptr A tr.T[j].inuse A l~1S2m~~ht+ 1_ I)) —

tv ~- tr .ptr > 2maxht _ 1 v (—tr .T (2st r .ptr ].inuse A —tr.T (2st r .ptr+1).inuse);

The 
~~

j  condition specifies that isleaf returns “true” if there is no vector index in range for
w hich T[j] is both in use and a left or right son of the input. Since the in condition is omitted,
it is assumed to be identically t rue, so isleaf must be applicable to any btree. To verif y isleaf ,
we must show the following:

~

- 
- T..~~~~~

11 
- - 

~
-- ._-—

~~~~~
- -
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3. Concrete operation
Show: I~ { tv ~ tr.p tr > 2maxhL j v (-tr .T(2str .ptr).inuse A -.tr.T[2str.ptr+1).inuse) )

(tv u —3j (j div 2 — tr .ptr A tr .T(j). inuse A ~~~~~~~~~~~~~~~~~~ A

Proof: Rewriting to eliminate and applying the assignment axiom, this becomes

~ ((tr.ptr > 2maxht _ 1 v (—tr .T[2*tr.ptr ).inuse A —tr.T(2str.ptr+ 1].inuse)

~ —((tr.T (2str .ptr ].inuse v tr.T[2ttr.ptr4 l).inuse) A (1~ 2str .ptr�2ma
~~

t 4 t _ 1
v 1~ 2*tr .ptr+ 1 <2maxht+ 1 - 1)) ,~

which in turn reduces to

~ ((tr .ptr > 2maxht _ 1 v (—tr.T [2str.ptr).inuse A —tr.T(2str .ptr+1].mnuse)
—(( tr.T[2*tr.ptr].inuse v tr.T(2str.ptr+1].inuse) A (1str.ptr�2ma~~

t
v l~ tr.ptr+ 1s2ma~~

t ) A ‘C ’]
which is clear.

4a. in condition holds
Show: 1c ~ true
Proof: Clear.

4b. post condition holds
Show: A tv & -]j (

~ div 2 = tr.ptr A tr.T[jJ.inuse A lS~~2
maxht+ I_ ll~flUSC)

z’ Yw — Jsubtr(<tr ,w,subtr> links)
Proof: The says there is no w for which Tft*f r .pt r4w jmuse, either because

2str .ptr would exceed the index range of the array or because the m use
bit is set to false. Dy the definition of links, there is rio triple
<tr.T (t r.pt r J,w ,t r.T [2*tr.ptr 4w]> which could correspondto <tr ,w,subtr>.

Finally, bnode provides a selecj .~ ., ruodeval, for performing fe tches and stores to the
value field of a tree node. The implementation of nodeval is given by

rn~p nodeval T[ptr).node;

Changing this particular field has no effect on any invariant , so nothing must be proved.

Conclusion

This paper has used a concrete example to exp lain the Alphard philosophy on the
development and verific ation of programs. The example was nontrivial; it implemented the
abstraction with a nonstandard representation , and it involved a subtype. Several aspects of
the development deserve special notice. 
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First , note that we did not verif y t he “main program”. The program was simply a
res tatement of an algorithm that had undergone considerable anal ysis in another formulation.
It would have been unreasonable to redo that anal ysis in the course of verifying the program.
We therefore indicated that it was sufficient to ensure that the program was an accurate
restatemen t of the algorithm. If program verification is ever to impact real programs , we must
take such steps to avoid reproving all programs from first principles. Since the !.2r.rn
encapsulates a collection of related information about how some abstract behavior is to be
achieved, it is a reasonable body of inf ormation about which to prove theorems. This is
evidenced by the nearl y comp lete independence of the discussions of the minreg program and
the htree form.

Next , the form presen ted in Appendix A contains functions not actually used by the
program of the examp le. We believe that in the future libraries of forms will develop, and that
these will be more useful than present libraries because the forms are verified and because
verif ication considerations stimulated careful thought about what constitutes a good
abstraction . Further , the exp licit distinction between the abstract specification and the
concrete implementation should simp lif y modification of the code both because the assumptions
on which users depend are made clear and also because only part of the verification should
have to he repeated.

Finall y, some of our colleagues have expressed concern over the length of Alphard
programs . Certainl y the verification informa tion adds text , but we believe that this information
mus t he supplied somewhere. Nalcata gave an Algol program for converting a parse tree to
code [Nak ita67] . That program performs a slightl y different opera tion from minreg, so an
exact compari son is im possible , but if we ignore verif icati on information and the btree
functions that were never used, the number of fexemes in the Alpharl procedures and forms
is within 10? of the number of lexemes in Naka ta ’s program. This crude comparison supports
our feeling that the program text itself is not excessively large.
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Appendix A
Complete Definition of Btree and Bnode

form btree(N:record, maxht:integer) —

begi nf or m

~pec if ic ations
requires maxht � 0
let btree = <r:N, g:graph>

where g <nodes: { tr:N} , links: {<tr i:N, w:boolean, tr~:N>}>;
invariant

(<n,w ,k 1>,<n,w ,k2> links ~ lc~ = k2) A ! unique left & right sons
(<n,w,x> ( links D Jy <n,1 -w ,y> ( links) ! either zero or two Sons
Vii ‘ nodes (<n,w ,r> -‘ links r is the root

A pathcnt (r ,n) = 1 ! singly connected
A length(<r..n>) ~ maxh t) ! limited height

initially btree <r , <{r } ,~ } >>;
functi ons

root(tr:btree) returns res: bnode p~~j  res = r,
height (tr:btree ) ret h:iruteger pQ~j h = max k st k—length(<r, . . ., x>)

St ( isleaf (x ) A root(r)),
f orm bnode(T:bl ree(?N:record,maxh t:un(eger))

~
g
~fli2r~’n

~pec~~ci~tions

~ bnode = ptr:N;
invarian t ptr ( nodes;
initially ptr =

functi ons
let ts on(tr:hnode) returns subtr:bnode

pre -‘is leaf (tr ) p221 <tr ,0,subtr> ( links,
rightson(tr:bn ode) r~ j,irns subtr:bnode

pre —isleaf ( tr) p221 <tr ,1,subtr> ( links,
isleaf(tr :bnode) re turns tv:boolean

pos t tv Yw -‘Jsubtr <tr ,w ,subtr’ ( links,
isroot(t r:bnode) returns tv:boolean

p9s t tv Yw -Jsubtr <subtr ,w ,tr > ( links,
father ( tr;bnode) returns suhtr :bnode

pre -‘root(tr) p
~~ 

3w St <tr ,w ,subtr> ( links;
ances tor (tr ,subtr:bnode) returns tv:boolean

p~ j tv tr=subtr V 3p=<tr ,.. ., subtr> it path(p),
extend(tr:bnode) p~~ isleaf( tr) A height(tr) < maxht

p22.!. — isleaf (tr ) A isleaf(rightson(tr)) A is leaf ( leftson (tr ))

- ~~~~~~~~ . . _ _ _ _ _ _ _
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selectors
nodeval: N;

endform

representation -

unique T: vect or(rec: record(riode:N, inuse:boolean),l,2maxht~~_ 1)
irut begin for x:invec(T) do x.inuse 4- false; T[ l] ~~ rec(null,true) ~~~~~,

!.~p~T) — < T(1].node, < (T[i).node I T(i].inuse}, (<I(i].node,w,T(2i+w].node>
I T[i).unuse A T(2i+wlinuse A w ((O,I) } >>;

invariant T[1J.inuse A (T[i].inuse ~ is! v T[i div 2).inusenT(i+1-2(i mod 2)linuse); —

implementation

~~~~ 
root out res — 1 —
The bnode return parameter is initialized to the root.

~~~~ height out h=log(max~ it T[i).inuse) —

first j: downto(2m
~~~

t4 ~ 1,1) suchthat T[j).inuse
then h i- floor(log2j );

formbody bnode —

beginform
representation

unique ptr: integer iriit ptr ~- 1;
~~~(ptr) — T[ptr] node;
invarian t 1�ptr~2m

~~
it

~ l_ 1 A T(ptr).inuse;

implementation

~~~~ leftson in — is leaf (tr ) out subtr.ptr — 2*tr.ptr —
subtr .ptr ‘— 2*t r.ptr;

~2i!i rightson in — isleaf ( tr) out subtr.ptr — 2str .ptr+1 —
subtr.ptr 2str .ptr + 1;

!~Q~i 
isleaf

~~ tv (-.3j (j div 2 = tr.ptr A tr .T[j ].unuse A j <~<2maxht+1..1)) —

- i tv 4- tr.ptr > 2m~ tht_ j  v (—tr.T(2*tr.ptr].inuse A —tr. T[2*tr.ptr+1].inuse)t

~~~ isroot out lv ~ (tr .ptr— 1) —

tv 4- tr .ptr— 1; -

~~~~ father in tr.ptr > 1 out subtr.ptr — tr.ptr div 2
subtr.ptr ‘- tr.ptr div 2; 

~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~~ ances tor in tr .T(tr.ptr].inuse A tr.T(subtr.ptr).inuse
otij lv ‘ ~~~~~~ St j 1—tr.ptr A j k—subtr.ptr
A tr .T[j~].inuse A i~-i

—
~1 div 2) —

begin local shftd;
shftd ~ tloor(log2 subtr.ptr) - tloor(log2 tr.ptr);
lv 4- tr.ptr — subtr.ptr div 2shftd; ~~~~

~2~1 
extend in isleaf( tr.ptr) A tr.ptr<2m~~

ht

~~ —is leaf(tr .ptr) A isleaf(rightson(tr .ptr)) A isleaf(leftson(tr .ptr)) —

begin
tr.T[2str.ptr].inuse i- tr.T[2str.ptr+1].inuse i- true;
tr.T[2str.ptr).node ~- tr.T[2str.ptr+ljnode ~ null;

rnal nodeval — T(ptr].node;
endf~tin~

endform;

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —‘-4
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Appendix B

Formal Definition of Graphs with Weighted Arcs

This formal def initiion is based on the definition of grap h given by Knuth (Knuth73, sec. 2.3.4]
wi th the addition of labels , or weights , on the arcs.

1. Let N be a set called the node dom ain of a graph and let W be a set called the
arc weights of a graph.

(a) An arc is a tri ple <fli,W j ,nk> where n
~
(N, w~(W , nkiN

(b) A graph is a pair <E,A> where E is a set of nodes and A is
a set of arcs such that <n~,w J,nk>(A 

~~ ~ ,rijç(E
(c) These are the only graphs.

2. The notation <n 1,n2, n,> is an abbreviation for { <n1,w 1,nf, <n 2,w2,n3>,
., ~~~~~~~~~~~ f or any values of w~

3. The following functions and relations are defined f or G = <E,A> and n,(E:

(a) adj(n 1,n2) Edt 3W St <n 1,w ,n2>(A
(b) pathcnt(n 1,n2) Edt cardinal it y( ~n1, . . ., n~> St <n

~,w
,n

~÷i>( A, i((1..k—1] )
(c) path(n l,nk ) 

~df <ni. . . ., nk> St <rl
~
,w,n

~+i > A, i(f 1..k— 11
(d) simple(<n 1, n2, . . ., n~>) Edt (n

~ 
— n~ D ~~~ = ~1,k}

A pathcnt(n l,nk)=1, i,j ( [1..k)
(e) stnngconn( G) Edt Vi ,j path(i ,j)
(f ) connected(g) Edf strngconn (GX).

where GX < GE , G.A u ~<a,b,c> I <c ,b,a> G.A >

(g) length(<n 1, n2, . . ~1 
nk>) df k

(Ii) cyc le(n~,n~) :~f J<x ,, . . ., x 1> it simple(<x 1, . . ., x~>
A i=j A length(<x~, . . ., x 1’) � 3

(i) C = H 5df G.A = H.A A G.E = H.E -

_ _ _  ~~~~~~ -.~~~~~~~~~~~~-_
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